The upstream boundary condition influences the leaflet opening dynamics in the numerical FSI simulation of an aortic BMHV.
نویسندگان
چکیده
In this paper, the influence of the upstream boundary condition in the numerical simulation of an aortic bileaflet mechanical heart valve (BMHV) is studied. Three three-dimensional cases with different upstream boundary conditions are compared. The first case consists of a rigid straight tube with a velocity profile at its inlet. In the second case, the upstream geometry is a contracting left ventricle (LV), positioned symmetrically with respect to the valve. In the last case, the LV is positioned asymmetrical with respect to the valve. The cases are used to simulate the same three-dimensional BMHV. The change in time of the LV volume is calculated such that the flow rate through the valve is identical in each case. The opening dynamics of the BMHV are modelled using fluid-structure interaction. The simulations show that differences occur in the leaflet movement of the three cases. In particular, with the asymmetric LV, one of the leaflets impacts the blocking mechanism at its open position with a 34% higher velocity than when using the velocity profile, and with an 88% higher velocity than in the symmetric LV case. Therefore, when simulating such an impact, the upstream boundary condition needs to be chosen carefully.
منابع مشابه
Numerical simulation of a 3D Bileaflet Mechanical Heart Valve using Fluid-Structure Interaction
Because of their long life span and durability, Bileaflet Mechanical Heart Valves (BMHV) are preferred for valve replacement. However, current BMHV designs induce calcification and thromboembolism, which is believed to be due to non-physiological flow and turbulence generated by the valve leaflets. Therefore, numerical flow simulations can provide relevant information for design optimization [1...
متن کاملSize-dependent Vibration and Instability of Magneto-electro-elastic Nano-scale Pipes Containing an Internal Flow with Slip Boundary Condition
Size-dependent vibrational and instability behavior of fluid-conveying magneto-electro-elastic (MEE) tubular nano-beam subjected to magneto-electric potential and thermal field has been analyzed in this study. Considering the fluid-conveying nanotube as an Euler-Bernoulli beam, fluid-structure interaction (FSI) equations are derived by using non-classical constitutive relations for MEE material...
متن کاملNumerical Simulation of Flow Past Oscillating Airfoil Using Oscillation of Flow Boundary Condition
The present study is devoted to an approximate modeling for numerical simulation of flows past oscillating airfoils. In this study, it is shown that the harmonic oscillating objects can be studied by simple numerical codes that are not able to solve moving grids. Instead of using moving grid for the simulation of flowfield around an oscillating airfoil, this unsteady flow is solved on a fixed g...
متن کاملNumerical simulation of the dynamics of a bileaflet prosthetic heart valve using a fluid-structure interaction approach.
The main purpose of this study is to reproduce in silico the dynamics of a bileaflet mechanical heart valve (MHV; St Jude Hemodynamic Plus, 27mm characteristic size) by means of a fully implicit fluid-structure interaction (FSI) method, and experimentally validate the results using an ultrafast cinematographic technique. The computational model was constructed to realistically reproduce the bou...
متن کاملA Fluid Structure Interaction Model of Native Aortic Valve with Physiologic Blood Pressure and Tissue Properties
The kinematics and dynamics of the aortic valve (AV) are highly dependent on the combined mechanical properties of the valve and the aortic root (AR), as well as the blood flow. Previous numerical models of physiological AV and AR, that included coaptation under the full cardiac cycle, ignored the influence of the blood flow (performing “dry” simulations). This study presents a full fluid-struc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal for numerical methods in biomedical engineering
دوره 28 6-7 شماره
صفحات -
تاریخ انتشار 2012